Graphene oxide from silk cocoon: a novel magnetic fluorophore for multi-photon imaging
نویسندگان
چکیده
In this work, we synthesized graphene oxide from silk cocoon embarking its new dimension as a magnetic fluorophore when compared with its present technical status, which at best is for extracting silk as a biomaterial for tissue engineering applications. We produced graphene oxide by pyrolysing the silk cocoon in an inert atmosphere. The collected raw carbon is oxidized by nitric acid that readily produces multilayer graphene oxide with nano carbon particulates. Structural properties of the graphene oxide were analyzed using scanning electron microscopy, transmission electron microscopy, Fourier transform infra-red spectroscopy, and Raman spectroscopy. The oxidized sample shows remarkable fluorescence, multi-photon imaging and magnetic properties. On increasing the excitation wavelength, the fluorescence emission intensity of the graphene oxide also increases and found maximum emission at 380 nm excitation wavelength. On studying the two photon absorption (TPA) property of aqueous graphene oxide using Z-scan technique, we found significant TPA activity at near infrared wavelength. In addition, the graphene oxide shows ferromagnetic behavior at room temperature. The observed fluorescence and magnetic property were attributed to the defects caused in the graphene oxide structure by introducing oxygen containing hydrophilic groups during the oxidation process. Previously silk cocoon has been used extensively in deriving silk-based tissue engineering materials and as gas filter. Here we show a novel application of silk cocoon by synthesizing graphene oxide based magnetic-fluorophore for bio-imaging applications.
منابع مشابه
Fluorescent silk cocoon creating fluorescent diatom using a “Water glass-fluorophore ferry”
Fluorophores are ubiquitous in nature. Naturally occurring fluorophores are exceptionally stable and have high quantum yield. Several natural systems have acquired fluorescent signature due to the presence of these fluorophores. Systematic attempt to harvest these fluorophores from natural systems could reap rich commercial benefit to bio-imaging industry. Silk cocoon biomaterial is one such ex...
متن کاملRemoval of Toxic Cr(VI) Ions from Water Sample a Novel Magnetic Graphene Oxide Nanocomposite
This work describes the synthesis of a novel magnetic graphene oxide composite for removal of Cr(VI) ions. The synthesized nanosorbent were characterized with various techniques such as FT-IR, X-ray diffraction (XRD), scanning electron microscopy (SEM), elemental analysis and vibrating sample magnetometry (VSM). This material is illustrated to represent a viable sorbent for the removal of Cr(VI...
متن کاملMagnetic amine-functionalized graphene oxide as a novel and recyclable bifunctional nanocatalyst for solvent-free synthesis of pyrano[3,2-c]pyridine derivatives
The new magnetic amine-functionalized graphene oxide (Fe3O4-GO-NH2) nanocatalyst was prepared through the reaction of 3-aminopropyltriethoxysilane (APTES) with magnetic graphene oxide (Fe3O4-GO). It was characterized by XRD, TEM, SEM, FT-IR and EDX techniques. The intrinsic carboxylic acids on the edges of Fe3O4-GO alo...
متن کاملA novel inexpensive method for preparation of silk nanofibers from cocoons
AbstractIn the present study , a novel method for the production of silk nano fibers are presented . In this way , a mechanical and easy technique is used instead of toxic and costly chemical methods . Also , the separation of silk nano fibers from the cocoon was carried out by mechanical homogenizer and probe ultrasonic homogenizer . After the preparation of silk nanofibers , the product was c...
متن کاملHighly Efficient and Excitation Tunable Two-Photon Luminescence Platform For Targeted Multi-Color MDRB Imaging Using Graphene Oxide
Multiple drug-resistance bacteria (MDRB) infection is one of the top three threats to human health according to the World Health Organization (WHO). Due to the large penetration depth and reduced photodamage, two-photon imaging is an highly promising technique for clinical MDRB diagnostics. Since most commercially available water-soluble organic dyes have low two-photon absorption cross-section...
متن کامل